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1 Introduction

Unquestionably, gauge theories are a central pillar of modern theoretical physics. Although

they are usually presented in terms of a local symmetry of a field theoretic action principle,

it is often useful to describe them in a first quantized language. The purpose of this Article

is to present new tools to analyze gauge field theories using a first quantized picture, and

to apply them to higher spin theories. These tools employ an algebraic construction known

as the detour complex. The basic elements of the detour complex are differential operators

which form the building blocks of the gauge theory under study. These differential operators

can be represented as quantum mechanical operators. Crucially, by forming first class

constraint algebras from them, one may consider worldline gauge theories. This procedure

gives rise to a particle model which generically is diffeomorphism invariant on the worldline,

and whose physical spectrum is related to the first quantization of the gauge field theory.

Then, the BRST quantization of the particle naturally provides a cohomological complex,

out of which one builds the detour complex. Equivalence of the BRST cohomology with the
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detour cohomology guarantees that the correct physical information is properly encoded in

the construction. From the detour complex one identifies an action principle for the gauge

invariant field equations and may use the associated particle model to extract information

about the quantized version of the theory.

Our first example — which provides much intuition — is the Maxwell detour. It

describes the abelian gauge theory of differential forms and is related to the quantization

of the N = 2 spinning particle. We then consider detour complexes constructed out of

the gauging of certain orthosymplectic quantum mechanical models [1], focusing mostly on

symplectic subgroups. We use them to analyze the structure of gauge theories for bosonic

fields of higher spins with arbitrary symmetry type [2] (see also [3–7]; we refer the reader

also to the series of higher spin review Articles [8]).

Thus, in section 2 we present the structure and some elements of detour complexes. In

section 3 we recall the use of path integrals to treat quantum field theories in first quantiza-

tion. Section 4 contains the example of the Maxwell detour dealing with the abelian gauge

symmetries of differential forms. In section 5 we construct detour complexes for higher

spin fields of arbitrary symmetry type. Finally, we present our conclusions in section 6.

2 Detour complexes

As already mentioned, gauge theories are usually presented in terms of a local symmetry

of an action principle. Other key ingredients, however, are gauge parameters, gauge fields,

field equations and Bianchi identities. These can all be packaged in a single mathematical

object known as a detour complex. Schematically

0 −→
{

gauge

parameters

}
d
−→

{
gauge

fields

}
→ · · · · · · →

{
field

equations

}
δ
−→

{
Bianchi

identities

}
−→ 0∣∣∣ G

x
(2.1)

where for simplicity in the last two entries we have labeled the field space with the equa-

tions living on that space. Recall that a sequence of operators is called a complex when

consecutive products vanish, so here

Gd = 0 = δG . (2.2)

These relations subsume the usual ones of gauge theories. Namely, if A is a gauge field,

then GA = 0 is its field equation, while if α is a gauge parameter, A → A + dα is the

corresponding gauge transformation. The relation Gd = 0 ensures that the field equations

are gauge invariant.

We call G the detour or long operator since it connects dual complexes. Optimally, G

is self-adjoint, so that one can use it to construct an action of the form S = 1
2

∫
(A,GA)

where the inner product is the one following naturally from the underlying first quantized

quantum mechanical model. From the action principle viewpoint, since an arbitrary vari-

ation produces the field equations GA = 0, specializing to a gauge transformation, the

operator δ, dual to d, must annihilate the equation of motion δGA = 0. This Noether-

type identity generalizes the Bianchi identity for the Einstein tensor of general relativity,

and is precisely the second relation above.

– 2 –
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The simplest example is the Maxwell detour. In that case gauge fields are one-forms,

or sections of Λ1M , while the gauge parameters are zero-forms Λ0M . The field equations

and Bianchi identities are also one and zero-forms, respectively. The differentials are the

exterior derivative and codifferential while the detour operator is simply their product. In

diagrammatic notation

0 −→ ∧0M
d
−→ ∧1M → · · · · · · → ∧1M

δ
−→ ∧0M −→ 0∣∣∣ δd

x
(2.3)

Maxwell’s equations are at once recognized as δdA = 0, while gauge invariance and the

Bianchi identity follow immediately from nilpotency of d and δ. The long operator δd

connects the de Rham complex and its dual. Notice we could also not detour, and continue

the de Rham complex, the next entry being two-forms, or in physics language, curvatures.

There are many other examples of detour complexes, for example: In four dimensions

the long operator δd is conformally invariant. In six dimensions, there exists a higher

order, conformally invariant detour operator δ∆d + · · · [9, 10]. Another interesting vari-

ant is to twist the Maxwell complex by coupling to the Yang-Mills connection of a vector

bundle over M . In this case, one obtains a complex exactly when the connection obeys the

Yang-Mills equations [11, 12]. In this Article we will concentrate on de Rham detours and

their generalization to “symmetric forms”. The key idea is to use the relation between first

quantized spinning particles and geometry. We obtain detour complexes by gauging these

models and employing BRST quantization. In particular, the long operator connecting a

complex with its dual, corresponds to a shift in the worldline diffeomorphism ghost number.

This representation of the BRST cohomology in terms of field equations for gauge potentials

is achieved by a careful choice of ghost polarizations. After reviewing the use of path inte-

grals in first quantized approaches, we begin by studying generalized Maxwell complexes.

3 Path integrals

Just as for strings, also in particle theory a first quantized approach is often useful. While

the field theory language is usually appropriate, the worldline approach can often be applied

to more efficiently calculate quantum corrections, see [13] for a review. The simplest way to

introduce the worldline formalism is perhaps to recall the example of a scalar field, whose

free propagator and one-loop effective action can be represented in terms of a quantum

mechanical hamiltonian supplemented by an integration over the Fock-Schwinger proper

time. Much of the heat kernel literature can be classified under this point of view. An

integration over the proper time signals that one is dealing with the quantum theory of a

reparametrization invariant particle system; a relativistic spinless bosonic particle for the

scalar field case. Similarly a spinning particle with N = 1 supergravity on the worldline is

related to the quantum theory of a Dirac field [14]. More generally so(N) spinning parti-

cles are related to fields of spin N/2 [15]. Once the connection between reparametrization

invariant particle models and quantum field theories is established, it is often advanta-

geous to quantize the mechanical model with path integrals, i.e., summing over spinning
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particle worldlines. For example, this worldline approach has been used for the so(N)

spinning particle in arbitrarily curved spaces with N = 0, 1, 2 to study the effective ac-

tion for scalars [16], spin 1/2 [17], and arbitrary differential forms (including vectors) [18]

coupled to gravity, respectively. The cases N > 2 do not admit a coupling to a generic

curved space, but in [19] the worldline path integral has been considered in flat space (note

that conformally flat backgrounds can be treated as well [20]) where the only information

contained in the one-loop effective action is the number of circulating physical excitations.

Schematically, to compute the one-loop effective action Γ, one path integrates over

closed worldlines with the topology of the circle S1. Gauge fixing worldline diffeomorphisms

produces an integral over the proper time β (the circumference of the circle). In arbitrary

dimensions D, the result is

Γ =

∫

S1

DX e−Sparticle[X] = −
1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)
D
2

γ(x, β) (3.1)

where the density γ(x, β) can typically be computed in a small β expansion

γ(x, β) = a0(x) + a1(x)β + a2(x)β
2 + · · · (3.2)

and an(x) are called heat kernel coefficients. This expansion applies to massless particles

and generically is not convergent in the upper β limit, even after renormalization. (Massive

particles contain an extra factor e−
1
2
m2β which improves the infrared behavior.) For a free

theory in flat space, the only nonvanishing coefficient is the a0, which is constant and

counts the number of physical degrees of freedom circulating in the loop. This simplest of

quantum computations is the one we focus on in this Article.

4 Maxwell detour

In this section we derive the Maxwell detour complex described in section 2. Our method

relies on BRST quantization and a careful choice of ghost polarizations. We start by

reviewing the underlying supersymmetric quantum mechanical model.

4.1 N = 2 supersymmetric quantum mechanics

The physical Hilbert space of N = 2 supersymmetric quantum mechanics is the space of

differential forms Γ(∧M) and, geometrically, its quantized Noether charges are the exterior

derivative d, codifferential δ, form Laplacian ∆ and the degree operator N [21]. In this

section, we review those results in detail.

The model is described by the action

S =

∫
dt

{
1

2
ẋµgµν ẋ

ν + iψ̄µ
∇ψµ

dt
+

1

2
Rµνρσ ψ̄

µψν ψ̄ρψσ
}
, (4.1)

which is invariant under rigid N = 2 supersymmetry (ε, ε̄), U(1) fermion number symmetry

(α) and worldline translations (ξ)

δxµ = iε̄ψµ + iεψ̄µ + ξẋµ ,

Dψµ = −εẋµ + iαψµ + ξ
∇ψµ

dt
, Dψ̄µ = −ε̄ẋµ − iαψµ + ξ

∇ψ̄µ

dt
. (4.2)
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In these formulæ D is the covariant variation: DXµ ≡ δXµ + ΓµνρX
νδxρ which obviates

varying covariantly constant quantities. Invariance under supersymmetry follows easily

upon noting the identity [
D,
∇

dt

]
Xµ = δxρẋσRρσ

µ
νX

ν , (4.3)

using which leaves only variations proportional to five fermions that vanish thanks to the

second Bianchi identity for the Riemann tensor.

To quantize the model we work in a first order formulation

ẋµ = πµ , (4.4)

which follows from the action principle

S(1) =

∫
dt

{
pµẋ

µ + iψ̄mψ̇
m −

1

2
πµg

µνπν +
1

2
Rmnrsψ̄

mψnψ̄rψs
}
. (4.5)

Here we have used the vielbein eµ
m to flatten the Lorentz indices on the fermions. Also

the covariant and canonical momenta πµ and pµ are related by

πµ = pµ − iωµmnψ̄
mψn , (4.6)

where ωµmn is the spin connection. Since the symplectic current pµdx
µ + iψ̄mdψ

m is

expressed in Darboux coordinates, we immediately read off the quantum commutation

relations

[pµ, x
ν ] = −iδνµ , {ψ̄m, ψ

n} = δnm . (4.7)

Motivated by geometry, we represent this algebra in terms of operators

pµ =
1

i

∂

∂xµ
, ψ̄µ =

∂

∂(dxµ)
, ψµ = dxµ , (4.8)

acting on wavefunctions

Ψ = Ψ(x, dx) =

D∑

k=0

Fµ1...µk
(x) dxµ1 ∧ . . . ∧ dxµk . (4.9)

The variables dxµ are Grassmann (so we will often denote their wedge products simply by

juxtaposition) which means the coefficients Fµ1...µk
in this expansion are totally antisym-

metric, or in other words differential forms (or sections of ∧kM).

The Noether charges corresponding to supersymmetries Q, Q̄, fermion number N and

worldline translations H are now operators acting on wavefunctions. With a suitable

normalization they equal

Q = iψµπµ ,

Q̄ = iψ̄µπµ ,

N = ψµψ̄µ,

H =
1

2
πmπ

m −
i

2
ωm

mnπn −
1

2
Rµνρσ ψ̄

µψν ψ̄ρψσ , (4.10)
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and satisfy a N = 2 superalgebra

{Q, Q̄} = −2H , [N , Q] = Q , [N , Q̄] = −Q̄ (4.11)

with all other (anti)commutators vanishing. These are quantum results, so their orderings

matter and have been carefully arranged to (i) maintain the classical symmetry algebra

and (ii) correspond to well known geometric operations. (This explains the explicit spin

connection appearing in the Hamiltonian H.) In fact, the charges (Q, Q̄,N ,−2H) corre-

spond precisely to the exterior derivative, codifferential, form degree and form Laplacian

acting on differential forms

QΨ = dΨ , Q̄Ψ = δΨ , −2HΨ = ∆Ψ . (4.12)

Indeed the above superalgebra is precisely the usual set of relations for these operators

dδ + δd =∆ , d N =(N − 1)d , δN =(N + 1)δ ,

d∆ =∆d , δ∆ =∆δ , ∆N =N∆ . (4.13)

Our next task is to gauge this model and obtain a one-dimensional supergravity theory

whose BRST quantization can then be studied.

4.2 N = 2 spinning particle

In Dirac quantization, gauging the supersymmetry and worldline translation symmetries

of N = 2 supersymmetric quantum mechanics amounts to imposing constraints Q = Q̄ =

H = 0. This is implemented by lapse (alias worldline einbein) and gravitini Lagrange

multipliers e, χ, χ̄ in the first order action

S(1) =

∫
dt
{
pµẋ

µ + iψ̄mψ̇
m − eH − χ̄Q− χQ̄

}
, (4.14)

where H = 1
2πµπ

µ− 1
2 Rµνρσ ψ̄

µψν ψ̄ρψσ , Q = iψµπµ, and Q̄ = iψ̄µπµ are now the classical

analogues of (4.10). Integrating out the canonical momentum yields

S =

∫
dt

{
1

2e

◦
xµgµν

◦
xν + iψ̄µ

∇ψµ

dt
+
e

2
Rµνρσ ψ̄

µψν ψ̄ρψσ
}
, (4.15)

where the supercovariant tangent vector

◦
xµ ≡ ẋµ − iχ̄ψµ − iχψ̄µ . (4.16)

The theory enjoys local supersymmetries

δxµ =iε̄ψµ + iεψ̄µ , Dψµ =−
1

e

◦
xµε , Dψ̄µ =−

1

e

◦
xµε̄ ,

δe =2iχ̄ε+ 2iχε̄ , δχ =ε̇ , δχ̄ = ˙̄ε . (4.17)

Invariance is easily verified by noting that D
◦
xµ = iε̄∇ψ

µ

dt + iε∇ψ̄
µ

dt + δe
◦

xµ

2e .

– 6 –
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We must now BRST quantize the model. Firstly, notice that its Dirac quantization

simply imposes the conditions

dΨ = δΨ = ∆Ψ = 0 (4.18)

on differential forms Ψ. This is the solution to the de Rham cohomology in terms of

divergence-free, harmonic forms. These conditions are interpreted as the equations of mo-

tion for the degrees of freedom propagated by the N = 2 spinning particle model in the

target spacetime. They are given in terms of the k-form field strengths Fk for k = 0, . . . ,D

of (4.9) satisfying the Maxwell equations dFk = δFk = 0. It is well known that the corre-

sponding number of physical degrees of freedom is given by DoF =
∑D−2

k=0

(D−2
k

)
= 2D−2.

However it is extremely useful to have a gauge theoretic description of these equations, for

example by introducing auxiliary/gauge fields that can allow for a corresponding action

principle. For this purpose we will employ the more powerful BRST quantization tech-

nique. As we shall see the above equations will correspond to the BRST cohomology at a

given ghost number.

We proceed in a canonical framework and introduce fermionic worldline diffeomorphism

ghosts with algebra

{b, c} = 1 , (4.19)

along with bosonic superghosts

[p, z∗] = 1 = [z, p∗] . (4.20)

Wavefunctions in the BRST Hilbert space now depend also on (c, z∗, p∗)

Ψ = Ψ(x, dx, c, z∗, p∗) =

∞∑

s,t=0

(z∗)s(p∗)t

s! t!

(
ψs,t + c χs,t

)
, (4.21)

where both ψs,t and χs,t are sections of ∧M (ungraded differential forms). The choice to

represent the BRST Hilbert space in terms of a Fock space with the above polarization is one

of the key points of this Article. Although, one may suspect that the choice of polarization

does not influence the cohomology of the BRST charge QBRST, as we shall see, it has an

extremely important impact on how that cohomology is represented. This point was first

realized by Siegel, see [22]. In particular, we will find equations of motion expressed in

terms of gauge potentials. These are realized by the the so-called long, or detour operator.

For this it is crucial that we express BRST wavefunctions as an expansion in ghost number

that is unbounded below and above. Only in this way, can we form a detour operator

connecting de Rham and dual de Rham complexes.

On the BRST Hilbert space, it is easy to construct the nilpotent BRST charge, the

result is

QBRST = c∆ + z∗δ + zd− zz∗b . (4.22)

The first three terms are the ghosts times the constraints while the final term reflects the

first class constraint algebra {d, δ} = ∆. No further terms are necessary to ensure

Q2
BRST = 0 , (4.23)

– 7 –
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as this algebra is rank 1. The other operator we shall need is the ghost number

Ngh = cb+ z∗p− p∗z , (4.24)

which obeys

[Ngh, QBRST] = QBRST . (4.25)

Our task now is to compute the cohomology of QBRST, namely

QBRSTΨ = 0 , Ψ ∼ Ψ +QBRSTX , (4.26)

which is the topic of the next section.

4.3 BRST quantization

To solve the BRST cohomology,1 we begin by requiring that Ψ is BRST closed. Comput-

ing QBRSTΨ we find the following conditions on the differential form-valued coefficients of

the BRST wavefunction (4.21)

dψ0,t+1 = 0 , t ≥ 0 ,

χs−1,t+1 = δψs−1,t + 1
sdψs,t+1 , t ≥ 0 , s ≥ 1 ,

∆ψ0,t = dχ0,t+1 , t ≥ 0 ,

∆ψs,t = sδχs−1,t + dχs,t+1 , t ≥ 0 , s ≥ 1 .

(4.27)

The last pair of relations are actually not independent of the first pair save for the special

case t = 0.

We may still shift Ψ by a BRST exact term QBRSTX, for which we make the ansatz

X =

∞∑

s,t=0

(z∗)s(p∗)t

s! t!

(
αs,t + c βs,t

)
. (4.28)

Computing QBRSTX we find equivalences/gauge invariances

ψ0,t ∼ ψ0,t + dα0,t+1 , t ≥ 0 ,

ψs,t ∼ ψs,t + dαs,t+1 + s(δαs−1,t − βs−1,t+1) , t ≥ 0 , s ≥ 1 ,

χ0,t ∼ χ0,t + ∆α0,t − dβ0,t+1 , t ≥ 0 ,

χs,t ∼ χs,t + ∆αs,t − sδβs−1,t − dβs,t+1 , t ≥ 0 , s ≥ 1 .

(4.29)

To analyze these equations it helps to invoke the grading by ghost number. At a given

ghost number Ngh = n, there are an infinity of form fields

(ψs,s−n, χs,s−n+1) , (4.30)

indexed by s. However, using the closed conditions and exactness freedom, we can arrange

for there to be only a single independent form field at each ghost number. To see this first

examine the second equivalence relation in (4.29). By choice of βs−1,t+1 we can set

ψs,t = 0 , t ≥ 0 , s ≥ 1 . (4.31)

1We thank Andy Neitzke and Boris Pioline for an invaluable collaboration leading to the results of this

section.
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Substituting this choice in the closed conditions (4.27), we learn that

χs,t = 0 , t ≥ 1 , s ≥ 1 ,

χ0,t = δψ0,t−1 , t ≥ 1 ,
(4.32)

so the remaining independent fields are ψ0,t with t ≥ 0 and χs,0 with s ≥ 0. From (4.27)

we see that they obey the closure conditions

dψ0,t = 0 , t ≥ 1 ,

δdψ0,0 = 0 ,

δχs,0 = 0 , s ≥ 0 .

(4.33)

The first and last of these are the closed conditions for the de Rham complex and its dual,

while the middle relation is the detour operator.

Now we study exactness. Firstly we note that

ψ0,t ∼ ψ0,t + dα0,t+1 , t ≥ 0 , (4.34)

whose interpretation in terms of de Rham complexes is clear. Then we observe that main-

taining the gauge choice (4.31) means that further transformations must obey

βs,t =
1

s+ 1
dαs+1,t + δαs,t−1 t ≥ 1 , s ≥ 0 . (4.35)

Employing this relation, then from (4.29) and using ∆ = dδ + δd we have

χ00 ∼ χ00 + δdα0,0 + d(δα0,0 − β0,1) = χ0,0 + δdα0,0 + d(dα1,1) , (4.36)

so that

χ0,0 ∼ χ0,0 + δdα0,0 . (4.37)

Again this matches the detour operator. Finally a similar manipulation for the last equiv-

alence in (4.29) for t = 0 and s ≥ 1 yields

χs,0 ∼ χs,0 + δ(−sβs−1,0 + dαs,0)− d(βs,1 − δαs,0) . (4.38)

The last term vanishes using (4.35), so calling γs ≡ −sβs−1,0 + dαs,0 (s ≥ 1), we find

χs,0 ∼ χs,0 + δγs , s ≥ 1 , (4.39)

which matches perfectly the dual de Rham complex. Therefore we have proven the equiv-

alence of the BRST cohomology and the Maxwell detour complex

· · ·
d
−→ ∧M

d
−→ ∧M

d
−→ ∧M ∧M

δ
−→ ∧M

δ
−→ ∧M

δ
−→ · · ·∣∣∣ δd

x
(4.40)

The horizontal grading is by ghost number, increasing from left to right. The detour occurs

at ghost number zero, at exactly which point the diffeomorphism ghost number makes its

– 9 –
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s

δ
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d

d

d

d

−3 −2 −1 0

1
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3

0
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−2

1

2

3

4

ψ

χ

t

Figure 1. The Maxwell complex making its way through the BRST Hilbert space. Diagonal lines

depict form fields of equal ghost number. The first graph plots fields ψs,t and the second χs,t.

jump by one unit. In figure 1 we depict the Maxwell detour complex snaking its way

through the BRST Hilbert space.

The physical Hilbert space identified by the Dirac quantization procedure that we sum-

marized earlier on is embedded in the BRST cohomology at fixed ghost number (i.e. zero

ghost number for the present case). As we have seen the same cohomology is reproduced by

the detour complex. An advantage is that the detour operator which acts at ghost number

zero is formally self adjoint and can be used to construct a field theoretical gauge invariant

action for the degrees of freedom propagated by the particle, that is
∫
AδdA ∼

∫
F 2 as

expected. The counting of degrees of freedom for this model is well known from standard

work on antisymmetric tensor fields, and we can reproduce it using the first quantized

picture in a somewhat simpler way.

4.4 Counting degrees of freedom

To extract quantum information one can equivalently use either the first quantized picture

of the N = 2 spinning particle or the second quantized, gauge invariant, field theory action.

The first quantized approach is quite efficient, and we use it here to compute the number

of physical degrees of freedom.

We need to evaluate the partition function of the N = 2 spinning particle on the circle

to get the one-loop effective action Γ. With euclidean conventions it reads

Γ[gµν ] =

∫

S1

DX DG

Vol(Gauge)
e−S[X,G;gµν ] , (4.41)

where X = (xµ, ψµ, ψ̄µ) and G = (e, χ, χ̄) indicate the fields that must be integrated over.
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S[X,G; gµν ] is the euclidean version of the action in (4.15)

S[X,G; gµν ] =

∫ 1

0
dτ

{
1

2e

◦
xµgµν

◦
xν + iψ̄µ

∇ψµ

dt
−
e

2
Rµνρσ ψ̄

µψνψ̄ρψσ
}
. (4.42)

The division by the volume of the gauge group implies that we need to fix the gauge

symmetries. The loop (i.e. the circle S1) is described by taking the euclidean time τ ∈ [0, 1],

imposing periodic boundary conditions on the bosons (xµ, e) and antiperiodic boundary

conditions on the fermions (ψµ, ψ̄µ, χ, χ̄). The gauge symmetries can be used to fix the

supergravity multiplet to Ĝ = (β, 0, 0), where β is the leftover modulus that must be

integrated over, i.e. the proper time. As the gravitini χ and χ̄ are antiperiodic, their susy

transformations (4.17) are invertible so that they can be completely gauged away, leaving

Faddeev-Popov determinants and no moduli. This produces

Γ[gµν ] = −
1

2

∫ ∞

0

dβ

β

(
Det

A
∂τ

)−2
∫

S1

DX e−S[X,Ĝ;gµν ] , (4.43)

where the proper time measure takes into account the effect of the symmetry generated by

the Killing vector on the circle. Note that the Faddeev-Popov determinants with antiperi-

odic boundary conditions (denoted by the subscript A) coming from the local supersym-

metry do not depend on the target space geometry. The overall normalization (−1/2) has

been inserted to match with the standard result for a single real scalar particle.

We are interested in computing the number of physical degrees of freedom, so we lose

no generality2 by taking the flat limit gµν = δµν , and evaluate the remaining free path

integral over the coordinates xµ and their fermionic partner ψµ, ψ̄µ

Γ[δµν ] = −
1

2

∫ ∞

0

dβ

β

(
Det

A
∂τ

)D−2
∫

dDx

(2πβ)
D
2

. (4.44)

Apart from the standard volume term and the correctly normalized proper time factors,

this result contains the degrees of freedom propagating in the loop,

DoF = (Det
A
∂τ )

D−2 . (4.45)

The free fermionic determinant is easily computed: the antiperiodic boundary conditions

produce a trace over the corresponding two-dimensional Hilbert space. Thus Det
A
∂τ = 2

and the degrees of freedom DoF = 2D−2 as expected. This first quantized picture has been

used quite extensively in [18] to describe the quantum properties of the gauge theory of

differential forms coupled to gravity.

5 Mixed higher spin detour

In [1], supersymmetric quantum mechanical models were constructed with R-symmetries

obeying the superalgebra osp(Q|2r). The “supercharges” of these models transformed un-

der the fundamental representation of osp(Q|2r), and therefore generated Q Grassmann

2For partially massless theories [23], more care is needed because there are various massless limits, but

here we are only interested in the strictly massless one.
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odd supersymmetries and 2r Grassmann even symmetries. The models were constructed in

curved backgrounds. It was found that the supercharges commuted with the Hamiltonian

only if the background manifold was a locally symmetric space, at general values of (Q, r).

For low-lying values of (Q, r) the models coincide with well known quantum mechanical the-

ories. The osp(1, 0) models is the N = 1 supersymmetric quantum mechanics whose single

supercharge corresponds to the Dirac operator and whose Hilbert space describes spinors.

The osp(2|0) theory reproduces the N = 2 supersymmetric quantum mechanics described

in section 4. For both those models the locally symmetric space condition is not necessary.

In this section we concentrate on the models with R-symmetry osp(0|2r) = sp(2r). These

models are purely bosonic. Their Hilbert spaces correspond to multi-symmetric forms and

their quantized Noether charges yield symmetrized gradient and divergence type-operators.

We will concentrate on the simplest locally symmetric space-Minkowski space, although

many of our computations should generalize easily at least to constant curvature spaces.

We begin with the simplest sp(2) model, which describes totally symmetric tensors or

“symmetric forms”.

5.1 Symmetric forms and sp(2) quantum mechanics

Symmetric forms share many similarities with their totally anti-symmetric counterparts-

differential forms. They are expressed in terms of totally symmetric tensors and commuting

coordinate differentials so that a symmetric rank s tensor ϕ(µ1...µs) becomes

Φ = ϕµ1...µsdx
µ1 · · · dxµs . (5.1)

There is an algebra of operations — gradient, divergence, metric, trace and the wave

operator first introduced by Lichnerowicz [24] and systemized in [1, 25, 26] (see [4, 27–29]

for other studies) — which greatly facilitates computations when the rank s is large or even

arbitrary. In particular, it is important to note that in this algebra (just as for differential

forms) it is no longer forbidden to add tensors of different ranks.

In flat space, there are six distinguished operators mapping symmetric tensors to sym-

metric tensors:

N –Counts the number of indices

N Φ = sΦ . (5.2)

tr –Traces over a pair of indices

tr Φ = s(s− 1)ϕρρµ3...µsdx
µ3 · · · dxµs . (5.3)

g –Adds a pair of indices using the metric

g Φ = gµ1µ2ϕµ3...µs+2dx
µ1 · · · dxµs+2 . (5.4)

div –The symmetrized divergence

div Φ = s∇ρϕρµ2...µsdx
µ2 · · · dxµs . (5.5)
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grad –The symmetrized gradient

grad Φ = ∇µ1ϕµ2...µs+1dx
µ1 · · · dxµs+1 . (5.6)

∆ –The Bochner Laplacian

∆ = ∇µ∇µ . (5.7)

The calculational advantage of these operators is the algebra they obey

[N, tr] =− 2tr , [N,div] =− div , [N,grad] =grad , [N,g] =2g ,

[tr,grad] =2div , [tr,g] =4N + 2D , [div,g] =2grad ,

[div,grad] =∆ . (5.8)

All other commutators vanish.

Symmetric forms may be interpreted as the Hilbert space of a quantum mechanical

model whose quantum Noether charges are given by the operators above [1]. For flat

backgrounds this theory is described by the simple action

S =

∫
dt

{
1

2
ẋµẋµ + iz∗µż

µ

}
. (5.9)

Here the complex variables (zµ, z∗µ) are viewed as oscillator degrees of freedom describing

the index-structure of wave functions so that upon quantization

z∗µ 7→ dxµ , zµ 7→
∂

∂(dxµ)
. (5.10)

The model’s symmetries, Noether charges and their relation to the geometric operators

given above is described in detail in [1]. In particular, the sp(2) “R-symmetry” is generated

by the triple (tr,N + D
2 ,g). The pair of operators {div,grad} transform as a doublet

under this sp(2) and their commutator produces the Hamiltonian which corresponds to the

Laplacian ∆. In this sense, {div,grad} could be viewed as pair of “bosonic supercharges”.

Totally symmetric tensor higher spin theories can be formulated in terms of the al-

gebra (5.8), so this relationship between those operators and the quantum mechanical

model (5.9) yields a first-quantized worldline approach to these models. From that view-

point we need to construct a spinning particle model by gauging an appropriate set of

symmetries. The BRST cohomology of that one dimensional gauge theory then yields the

physical spectrum of a higher spin field theory. We construct this spinning particle model

in section 5.5. When the symmetries that we choose to gauge form a Lie algebra, the

BRST problem becomes equivalent to one in Lie algebra cohomology. This is the topic of

our next section.

5.2 BRST quantization and lie algebra cohomology

In this section we formulate the theory of massless, totally symmetric higher spins [33, 34]

as the Lie algebra cohomology of a very simple algebra g:

gA =
{
tr , div , grad , ∆

}
, (5.11)
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acting on the vector space V of symmetric forms. The BRST quantization for this algebra

was first studied in [30] (see also [31, 32]).

Let us very briefly review the relationship between BRST quantization and Lie algebra

cohomology. In BRST quantization the BRST Hilbert space is expressed as wavefunctions

expanded in anticommuting ghosts

ΨBRST =

dimg∑

k=0

cA1 · · · cAkΨA1...Ak
, (5.12)

while in Lie algebra cohomology the V -valued wavefunctions ΨA1...Ak
are viewed as multi-

linear maps g
∧k → V and form the cochains of a complex. The cochain degree k is BRST

ghost number. The Chevalley-Eilenberg differential δ [35]

ΨA1...Ak

δ
→ g[A1

ΨA2...Ak+1] −
k

2
fB[A1A2

Ψ|B|A3...Ak+1] , (5.13)

can be compactly expressed in terms of the BRST charge

QBRST = cAgA −
1

2
fCABc

AcB
∂

∂cC
, (5.14)

acting at ghost number k. The cohomology of QBRST at ghost number k equals the Lie

algebra cohomology Hk(g, V ).

Returning to our specific Lie Algebra (5.11), we now relate its Lie algebra cohomology

at degree one to the massless higher spin theory. At degree one, our problem is a very

simple one: We first introduce a wavefunction for every generator

ΨA =
{

Ψtr,Ψdiv,Ψgrad,Ψ∆

}
. (5.15)

The closure condition ΨA ∈ kerδ yields a set of
(dimg

2

)
differential equations following

directly from the commutation relations (5.8)

tr Ψdiv − div Ψtr = 0 ,

tr Ψgrad − grad Ψtr = 2Ψdiv ,

tr Ψ∆ −∆ Ψtr = 0 ,

div Ψgrad − grad Ψdiv = Ψ∆ ,

div Ψ∆ −∆ Ψdiv = 0 ,

grad Ψ∆ −∆ Ψgrad = 0 . (5.16)

Exactness, ΨA ∼ ΨA + XA with XA ∈ imδ, yields the gauge invariances of this set

of equations

δΨtr = tr ξ ,

δΨdiv = div ξ ,

δΨgrad = grad ξ ,

δΨ∆ = ∆ ξ . (5.17)
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The fields (Ψ∆,Ψgrad,Ψdiv) correspond to the BRST triplet structure discussed in [31]

(denoted (C,ϕ,D)) while Ψtr is the compensator field introduced there.

Eliminating the fields Ψdiv and Ψ∆ using the second and fourth equations in (5.16),

we find that only the first and sixth of these equations are independent and give a de-

scription of all massless, totally symmetric higher spins in terms of a pair of unconstrained

fields (Ψgrad,Ψtr) with a single unconstrained gauge parameter ξ

G Ψgrad =
1

2
grad3 Ψtr ,

tr2 Ψgrad = 4

(
div +

1

4
grad tr

)
Ψtr ,

δΨgrad = grad ξ ,

δΨtr = tr ξ . (5.18)

Here the operator G is given by

G = ∆− grad div +
1

2
grad2 tr . (5.19)

Although, for some contexts, a formulation of higher spin dynamics in terms of uncon-

strained fields can be useful, the above system has the disadvantage that it has terms cubic

in derivatives. This problem can be removed by using some of the gauge freedom to set the

field Ψtr = 0. This yields the standard description of massless, totally symmetric higher

spins in terms of a doubly trace-free symmetric tensor and a trace-free gauge parameter

G Ψgrad = 0 = tr2 Ψgrad ,

δΨgrad = grad ξ , tr ξ = 0 . (5.20)

It is important to note that since we kept the rank s, or in other words the eigenvalue

of the index operator N, arbitrary these relations generate the gauge invariant equations

of motion for fields of any spin. We also remark that the operators {G, tr2} themselves

generate a first class algebra.

Finally, we can formulate this system in terms of a detour complex as follows. The

field equation G Ψgrad = 0 is equivalent to the equation

G Ψgrad ≡

(
1−

1

4
g tr

)
G Ψgrad = 0 , (5.21)

where

G = ∆− grad div +
1

2

(
grad2 tr + g div2

)
−

1

4
g (2∆ + grad div) tr . (5.22)

We will call this operator the higher spin Einstein operator, since if Ψgrad = hµνdx
µdxν it

then produces the linearized Einstein tensor

GΨgrad = (∆hµν − 2∇µ∇
ρhρν +∇µ∇νh

ρ
ρ + ηµν∇

ρ∇σhρσ − ηµν∆hρ
ρ)dxµdxν . (5.23)
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The higher spin Einstein operator obeys identities

div G = 0 modleft g , (5.24)

G grad = 0 modright tr , (5.25)

where equality holds up to terms proportional to the operators g and tr acting from the

left and right, respectively. This allows us to form a detour complex

0 −→ ⊙TM/tr
grad
−→ ⊙TM/tr2 → · · · · · · → ⊙TM/tr2

div
−→ ⊙TM/tr2 −→ 0∣∣∣ G

x (5.26)

where⊙TM/• denotes symmetric tensors modulo the relation •. The operator G is formally

self-adjoint so the equation of motion GΨgrad = 0 comes from an action principle S =
1
2

∫
(Φ,GΦ) where the inner product (·, ·) is the one inherited from the underlying quantum

mechanical model. The relations (5.24) and (5.25) express the Bianchi identity and gauge

invariance of this field equation. Our next task is to generalize this construction to tensors

of arbitrary symmetry types, and in particular find compact expressions for the Einstein

operators for these theories.

5.3 Mixed tensors and sp(2r) quantum mechanics

Tensors transforming under arbitrary representations of gl(D) can be expressed either in

terms of:

1. Tensors labeled by groups of antisymmetric indices ω[µ1
1...µ

1
k1

]···[µs
1...µ

s
ks

] —“multi-

forms”— or schematically

⊗ ⊗ · · · ⊗ (5.27)

where s labels the number of antisymmetric columns, while the ki label the number

of boxes in each column.

or

2. Tensors labeled by groups of symmetric indices ϕ(µ1
1...µ

1
s1

)···(µr
1...µ

r
sr

) —“multi-

symmetric forms”— or schematically

⊗

⊗
...

⊗

(5.28)

where r labels the number of symmetric rows, while the si label the number of boxes

in each row.
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In each case irreducible gl(D) representations are obtained by placing algebraic constraints

on tensors of these types akin to the Bianchi identity of the first kind obeyed by the Riemann

tensor. Supersymmetric quantum mechanical models whose Hilbert spaces are populated

by the tensors described above were developed in [1]. The R symmetry groups are O(2s)

and Sp(2r) for the two respective cases. Models for tensors with both symmetric and

antisymmetric groups of indices also exist and have an osp(2s|2r) R-symmetry. The N = 2

and sp(2) (super)symmetric quantum mechanical models described above are the lowest

lying examples of these.

Although, all the computations in this work, should in principle carry over to

both osp(Q|2r) models for arbitrary integers3 (Q, r), here we concentrate on the sp(2r)

case. There are two reasons for this choice. Firstly, because the rows in (5.28) are symmet-

ric, this allows us to handle arbitrarily high spins without introducing arbitrarily quantum

mechanical oscillator modes. In particular, if we take r ≥ D wavefunctions span tensors of

arbitrary type. Secondly, since only bosonic oscillators are required, the BRST ghosts will

all be fermionic leading to a BRST wavefunction with a finite expansion in ghost modes

and in turn a Lie algebra, rather than Lie superalgebra cohomology problem.

The quantum mechanical model whose wavefunctions describe multi-symmetric forms

derives from the simple action principle

S =

∫
dt

{
1

2
ẋµẋµ + iz∗iµż

iµ

}
. (5.29)

Here we have introduced 2r oscillators (z∗iµ, z
iµ) with i = 1 . . . r. Their kinetic term can be

written in the manifestly sp(2r) symmetric way i
2zαµǫ

αβ żµβ where zα = (z∗i , z
i) and ǫαβ is

the antisymmetric invariant tensor of sp(2r). Again, this theory can be coupled to curved

backgrounds; we refer to [1, 36] for details.

Upon quantization the oscillators can be represented in terms of sets of commuting

differentials [1, 6]

z∗µi = dix
µ , ziµ =

∂

∂(dixµ)
. (5.30)

The tensor depicted in (5.28) is then denoted

Φ = ϕ(µ1
1...µ

1
s1

)···(µk
1 ...µ

r
sr

)d1x
µ1

1 · · · d1x
µ1

s1 · · · drx
µr

1 · · · drx
µr

sr . (5.31)

The sp(2) generators g, N and tr of the above sections are promoted to r× r matrices

of operators:

gij = dix
µgµνdjx

ν ,

N
j
i = dxµi

∂

∂(djxµ)
,

trij =
∂

∂(dixµ)
gµν

∂

∂(djxν)
. (5.32)

3Note that when Q is odd, the model includes spinor fields [1].
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The operators (gij ,N
j
i , tr

ij) generate sp(2r)

[Nj
i ,gkl] = 2δj(kgl)i ,

[trij,gkl] = 4δ
(i
(kN

j)
l) + 2D δi(kδ

j
l) ,

[Nj
i , tr

kl] = −2δ
(k
i trl)j ,

[Nj
i ,N

l
k] = δjkN

l
i − δ

l
iN

k
j . (5.33)

They correspond to “R-symmetries” of the model (5.29). Geometrically, in terms of the

picture (5.28), they count the number of indices in a given row, move boxes from one row

to another, and add or remove pairs of boxes to or from (possibly distinct) rows using the

metric tensor.

The differential operators div and grad are replaced by 2r operators corresponding

to the divergence and gradient acting on each row in (5.28). These form the fundamental

representation of sp(2r).

[Nj
i ,gradk] =δjk gradi , [Nj

i ,divk] =− δki divj ,

[trij ,gradk] =2δ
(i
k divj) , [gij ,divk] =− 2δk(i gradj) , (5.34)

and themselves obey the supersymmetry-like algebra

[divi,gradj] = δij ∆ . (5.35)

Before studying the Lie algebra cohomology of the above algebra, and the accompanying

spinning particle model, in the next sections, let us briefly discuss how irreducible tensor

representations can be obtained from the reducible ones depicted in (5.28).

There are two pertinent notions of irreducibility for tensors. The first is with respect

to gl(D) and is obtained by studying all possible permutation symmetries. This can be

achieved using the operators N
j
i which move a box from row j to row i with a combinatorial

factor equaling the number of boxes in row j, for example

N3
2




⊗

⊗




= 4




⊗

⊗



. (5.36)

Irreducible gl(D) representations correspond to Young diagrams in which the number of

boxes in each row decreases weakly (read from top to bottom). This amounts to tensors

in the kernel of all operators

{Nj>i
i } , (5.37)

which generate the nilradical subalgebra of gl(r).
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For physical applications, often the stronger requirement of so(D) irreducibility is

placed on tensors. This amounts to additionally removing all traces and therefore tensors

in the kernel of

{Nj>i
i , trij} . (5.38)

This set generates the nilradical of sp(2r). It plays an important rôle in the choice of first

class algebra in the BRST construction of the next section.

5.4 Mixed symmetry Einstein operators

The aim of this section is to derive the generalization of the Einstein operator (5.22) to

higher spins of arbitrary symmetry type. This result can actually be directly obtained by

covariantizing (5.22) with respect to4 sp(2r) but here we outline its BRST derivation to

connect with our path integral techniques. (For a review of existing available higher spin

BRST techniques see [37], the unsymmetrized version of our Einstein operator was derived

by BRST techniques recently in [38]. BRST quantization of the algebra (5.39) below was

also considered in [39]).

To begin with we must choose the first class algebra generalizing (5.11). The ba-

sic philosophy is that gauging {divi,gradi,∆} yields the correct differential relations on

propagating physical modes-this is perhaps seen most easily in the path integral approach

described in section 5.6. We also expect algebraic relations that ensure the theory de-

scribes irreducible representations of the Lorentz group. These will follow by also gauging

the nilradical sp(2r) operators in (5.38). Hence we study the Lie algebra cohomology of

g =
{
trij , divi, N

j>i
i , gradi, ∆

}
(5.39)

acting on multi-symmetric forms.

The next question we must address is what degree/ghost number cohomology corre-

sponds to the underlying physical system. This is resolved by recalling that the totally

antisymmetric tensor theories possess gauge for gauge symmetries. For example, for a

two-form ω with gauge transformation δω = dα, exact one-form gauge parameters α = dβ

do not act on ω. In other words, two-forms appear at degree two in de Rham cohomology.

However, multi-symmetric forms with r rows as in (5.28) can also be expanded in multi-

forms of degree r or less. This implies gauge for gauge symmetries even for multi-symmetric

forms and shows that we should study the degree r cohomology.

At degree r there are
(
dimg

r

)
=
(
(r+1)2

r

)
closure relations on

(
dimg

r−1

)
fields (because

here dimg = (r + 1)2). These read

g[A1
ΨA2...Ar+1] −

r

2
fB[A1A2

Ψ|B|A3...Ar+1] = 0 . (5.40)

These fields enjoy
(dimg

r−1

)
=
((r+1)2

r−1

)
gauge invariances following from exactness

δΨA1...Ar = g[A1
ξA2...Ar ] −

r − 1

2
fB[A1A2

ξ|B|A3...Ar ] . (5.41)

4We thank Stanley Deser for this observation.
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Solving this system at arbitrary degree r may seem daunting, but is in fact not far more

difficult than the r = 1, sp(2) computation performed above. Let us sketch the main ideas

and then give the result.

Firstly, we note that the field

Ψ ≡ Ψgrad1...gradr
=

1

r!
ǫi1...irΨgradi1

...gradir
(5.42)

gives the minimal covariant field content of our final detour complex. Here, and in what

follows, we use a compact notation where field labels gradi are soaked up with the sl(r)

invariant, totally antisymmetric symbol

Ψi1...in
• ≡

1

(r − n)!
ǫi1...irΨ•gradin+1

...gradir
. (5.43)

Now we turn to the closure relations (5.40). When one of the adjoint indices is ∆ and

all others are gradi we obtain a relation analogous to the last one in (5.16)

∆ Ψ− gradi Ψ i
∆ = 0 . (5.44)

The field Ψ i
∆ is not independent. It is eliminated by a pattern of closure relations analogous

to the sp(2) ones in (5.16)

diviΨ− gradj Ψ j

divi = Ψ i
∆ ,

trij Ψ− gradr Ψ r
trij = Ψj

divi + Ψi
divj . (5.45)

These imply

GΨ =
1

2
gradi gradj gradk Ψk

trij , (5.46)

where

G = ∆− gradidivi +
1

2
gradigradjtr

ij . (5.47)

(This operator was first derived by Labastida in [4].) As in the sp(2) case, the field Ψk
trij

vanishes once we use the gauge freedom implied by exactness. However, there are still

double-trace relations satisfied by the physical field Ψ. For these we consider the further

closure relation

trij Ψl
divk − divk Ψl

trij − gradmΨml
divktrij = Ψil

divkdivj + Ψjl

divkdivi −Ψkl
∆ trij . (5.48)

This time the second and third terms on the left hand side can be gauged away as can the

antisymmetric part of Ψi
divj so, using (5.45), we must solve the equation

trij trklΨ = Ψil
divkdivj + Ψjl

divkdivi −Ψkl
∆ trij . (5.49)

The antisymmetric part in k and l determines Ψkl
∆ trij in terms of Ψil

divkdivj which in turn

depends on double traces of the physical field Ψ. However, symmetrizing the above equation

in any three indices causes the right hand side to vanish identically. Therefore we learn

the double trace relation

tri(jtrkl)Ψ = 0 . (5.50)
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Finally we must remember the closure relations coming from gauging the R-symmetries

N
j>i
i . In particular, using the trivial identity δj>ii = 0 we have

N
j
i Ψ− gradkΨ

k
N

j
i

= 0 , j > i . (5.51)

Gauging away the second term leaves us with the algebraic constraint

N
j>i
i Ψ = 0 . (5.52)

At this point there are no further constraints on the physical field Ψ and all remaining

fields are either gauged away or algebraically dependent on Ψ. Let us gather together the

equations of motion for Ψ;

GΨ = 0 = tri(jtrkl) Ψ = N
j>i
i Ψ , (5.53)

with G given in (5.47). As a consistency check, it is not difficult to verify that the operators

{G, tri(jtrkl), N
j>i
i } themselves form a first class algebra.

These equations of motion are gauge invariant under transformations following from

exactness (5.41)

δΨ =
1

(r − 1)!
ǫi1...irgradi1 ξi2...ir ≡ gradiξ

i . (5.54)

In the last term we have employed the compact notation (5.43) also for the gauge pa-

rameters. The parameters themselves are subject to constraints that can be deduced by

carefully following which gauge freedoms were employed to remove all independent fields

save for the physical one Ψ. These read

tr(ij ξk) = tri(jtrkl) ξm = 0 = N
j>i
i ξk + δki ξ

j>i . (5.55)

The longhand notation in the second term of (5.54) makes it clear that there are gauge

for gauge symmetries

δξgradi1
...gradir−1

= grad[i1ξgradi2
...gradir−2]

, (5.56)

coming from the Lie algebra cohomology at degree r−1. Of course, there are further gauge

for gauge symmetries of the same form corresponding to the system being rank r when

irreducible tensors are expanded in an antisymmetric basis.

To end this section, we compute the mixed symmetry analog of the Einstein opera-

tor (5.22). Firstly the field equation GΨ = 0 is equivalent to

GΨ ≡

(
1−

1

4
gij tr

ij +
1

48
gijgkl tr

ijtrkl
)

GΨ = 0 . (5.57)

(Here, and in the formula that follows we specialize to r = 2 for simplicity). The mixed

higher spin Einstein operator G then equals

G = ∆− gradi divi +
1

2

(
gij dividivj + gradigradj tr

ij
)

−
1

4
gij

(
2∆− gradk divk

)
trij −

1

2
gijgradk divitrjk

+
1

48
gijgkl (4∆ + gradm divm) trijtrkl

−
1

6

(
gi[jgk]l dividivjtrkl + gijgradkgradl tr

i[jtrk]l
)
. (5.58)

– 21 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
7

It is self-adjoint and obeys Bianchi and gauge invariance identities

divi G = 0 modleft gij , (5.59)

G gradi = 0 modright trij , (5.60)

ensuring the existence of a detour complex analogous to (5.26). Once again, an action

principle S = 1
2

∫
(Φ,GΦ) with inner product (·, ·) inherited from the underlying quantum

mechanics also follows immediately. Our next task is to quantize this system. We adopt a

first quantized approach which we now explain.

5.5 The sp(2r) spinning particle

The particle action introduced in the previous section in equation (5.29) is invariant under

global extended supersymmetry, with Sp(2r) R-symmetry group. This action can be used

to construct locally supersymmetric particle actions that give a path integral implementa-

tion of the quantum algebras studied previously.

Let us start from the phase space symplectic integral

S =

∫
dt
{
pµẋ

µ + iz∗iµż
iµ
}
, (5.61)

which is invariant under the action of the global transformations with symmetry generator

G = ξH + σ̄iS
i + σiS̄i +

1

2
βijK̄ij +

1

2
β̄ijK

ij + αijJ
j
i , (5.62)

where the classical susy generators and classical sp(2r) generators are, respectively, given by

S̄i =p · z∗i , Si =p · zi , H =
1

2
p2 , (5.63)

K̄ij =z∗i · z
∗
j , Jji =z∗i · z

j , Kij =zi · zj . (5.64)

Here the u(r) subalgebra generated by Jji is made manifest. Note that the canonical

quantization discussed earlier simply amounts to the replacement

iS̄i →gradi , iSi →divi , −2H →∆

K̄ij →gij , Jji →N
j
i , Kij →trij . (5.65)

The transformation rules for the dynamical fields can be read off from δq = {q,G}

δxµ = ξ pµ + σ̄i z
iµ + σi z∗µi ,

δpµ = 0 ,

δziµ = −iσi pµ − iαij z
jµ − iβij z∗µj ,

δz∗iµ = iσ̄i p
µ + iαji z

∗
jµ + iβ̄ij z

j
µ . (5.66)

Gauged actions are thus obtained by adding gauge fields coupled to the above conserved

charges. In particular, gauging all the global symmetries yields the action

S =

∫
dt

{
pµẋ

µ + iz∗iµż
iµ − eH − s̄iS

i − siS̄i −
1

2
b̄ijK

ij −
1

2
bijK̄ij − a

i
jJ

j
i

}
, (5.67)
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and the transformations for the gauge fields are obtained by requiring S to be invariant

under local transformations Ξ(t) = (ξ(t), σ̄i(t), σ
i(t), β̄ij(t), β

ij(t), αij(t)), namely

δe = ξ̇ + i2σis̄i − i2σ̄is
i ,

δsi = σ̇i + iaijσ
j − iαijs

j + iβij s̄j − ib
ij σ̄j ,

δs̄i = ˙̄σi − ia
j
i σ̄j + iαji s̄j − iβ̄ijs

j + ib̄ijσ
j ,

δbij = β̇ij + i
(
aik β

jk + ajk β
ik
)
− i
(
αik b

jk + αjk b
ik
)
,

δb̄ij = ˙̄βij − i
(
aki β̄jk + akj β̄ik

)
+ i
(
αki b̄jk + αkj b̄ik

)
,

δaij = α̇ij − i
(
αik a

k
j − a

i
k α

k
j

)
+ i
(
βik b̄jk − b

ikβ̄jk

)
. (5.68)

However, it will be most interesting to consider partial gaugings that only involve subal-

gebras of the above algebras. In fact, in many of these cases it is possible to leave (part

of) the abelian subgroup U(1)r ⊂ U(r) invariant, which would allow a gauge-invariant

Chern-Simons action

SCS =

∫
dt
∑

i

qi a
i
i . (5.69)

This can be used to fix the number of indices in a particular row of a Young diagram.

Let us single out a few interesting cases

1. Gauge H, S̄i, S
i, Kij , J ij (or ∆, grad, div, tr and all N’s). This amounts to

setting bij = βij = 0 in the previous transformations rules and leaves in particular

δaij = α̇ij − i
(
αik a

k
j − a

i
k α

k
j

)
(5.70)

from which it is obvious that a =
∑r

i a
i
i is invariant and the unique Chern-Simons

term is SCS =
∫
dt q a.

2. Gauge H, S̄i, S
i, Kij , Jj≥ii (or ∆, grad, div, tr and nilradical N’s). This amounts

to setting bij = βij = 0 and aij = αij = 0 when i > j, from which

δaii = 0 , (no sum implied) (5.71)

and allowed Chern-Simons are given by SCS =
∫
dt
∑

i qi a
i
i.

We are now ready to quantize these gauged models.

5.6 Counting degrees of freedom

In the present section we use the particle actions described above to compute the number of

degrees of freedom for mixed higher spin tensor multiplets. We study the partition function

Z ∼

∫

S1

DXDE

Vol(Gauge)
eiS[X,E]+iSCS[E] , (5.72)

where X collectively denotes all dynamical fields, whereas E denotes gauge fields. In the

latter we need to carefully gauge fix all the gauge symmetries present in the spinning
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particle action. We now Wick rotate to Euclidean time (periodic boundary conditions)

and use the Faddeev-Popov trick to extract the volume of the gauge group to set a gauge

choice that completely fixes all the supergravity fields up to some constant moduli fields

E = (e, s̄i, s
i, b̄ij , b

ij , aij) = (β, 0, 0, 0, 0, θiδ
i
j) , (5.73)

where âij = θiδ
i
j is the most generic constant element of the Cartan subalgebra of sp(2r),

with θi being angles taking values in a fundamental domain. We thus have

Z = −
1

2

∫ ∞

0

dβ

β

∫
dDx

(2πβ)D/2
DoF(q, r) (5.74)

with

DoF(q, r) ≡ Kr

r∏

i=1

[ ∫ 2π

0

dθi
2π

eiqiθi

]

︸ ︷︷ ︸
Cartan moduli for Sp(2r) +CS

r∏

i=1

[
Det(∂τ − iθi)

]

︸ ︷︷ ︸
S̄i

r∏

i=1

[
Det(∂τ + iθi)

]

︸ ︷︷ ︸
Si

×
r∏

i=1

[
Det(∂τ + iθi)]

−D

]

︸ ︷︷ ︸
z,z∗

r∏

i=1

[
Det(∂τ − 2iθi)

]

︸ ︷︷ ︸
K̄ii no sum

r∏

i=1

[
Det(∂τ + 2iθi)

]

︸ ︷︷ ︸
Kii no sum

×
∏

i6=j

[
Det

(
∂τ − i(θi − θj)

)]

︸ ︷︷ ︸
U(r) step operator

∏

i<j

[
Det

(
∂τ − i(θi + θj)

)]

︸ ︷︷ ︸
K̄ij , i6=j

×
∏

i<j

[
Det

(
∂τ + i(θi + θj)

)]

︸ ︷︷ ︸
Kij , i6=j

(5.75)

being the number of degrees of freedom, and K−1
r the number of fundamental domains

included in the integration domain. All the determinants are evaluated with periodic

boundary conditions because the fields traced over are bosonic.

The latter expression should really be understood as a generating function, including

all ingredients for all possible sp(2r) particle actions. Clearly, for each specific gauged

action, one has to pick out only those determinants that are involved in its gauge fixing.

Let us consider the example 2 of section 5.5, which we claim corresponds to the BRST

cohomology of the algebra (5.39) computed in section 5.4. For that theory we clearly have

DoF(q, r) = Kr

r∏

i=1

[ ∫ 2π

0

dθi
2π

eiqiθi

] r∏

i=1

[
Det(∂τ + iθi)]

2−D

] r∏

i=1

[
Det(∂τ − 2iθi)

]

×
∏

i<j

[
Det

(
∂τ − i(θj − θi)

)] ∏

i<j

[
Det

(
∂τ + i(θi + θj)

)]
. (5.76)

Using that

Det(∂τ + iθ) = 2i sin(θ/2) (5.77)
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and making the change of variables wi = e−iθi we obtain

DoF(q, r) = Kr

r∏

i=1

[
−

∮
dwi

2πiwi

(1− wi)
2−D(w2

i − 1)

w
qi+r+1−D/2
i

]∏

i<j

(wj − wi)(1− wjwi) (5.78)

that gives

DoF(q, r) = Kr

r∏

i=1

[
−

1

ni!

dni

dwni

i

]

×
r∏

i=1

(1− wi)
2−D(w2

i − 1)
∏

i<j

(wj − wi)(1 − wjwi)
∣∣∣
wi=0

(5.79)

with ni = qi + r + 1−D/2 .

Let us consider a few specific examples. The simplest one is clearly r = 1 for which

we set s ≡ q + 2−D/2 = n and, using that K1 = 1, we obtain

DoF(s, 1) =
D + 2s − 4

s

(
D + s− 5

s− 1

)
(5.80)

which is precisely the dimension of a Young tableau of so(D−2) with 1 row and s columns.

For r = 2, we identify n2 ≡ s2 +1 and n1 ≡ s1, then K2 = 1 and using (5.79) we obtain

DoF(s2, s1, 2) =
(D + s1 − 7)!(D + s2 − 6)!(s2 − s1 + 1)!

(D − 6)!(D − 4)!(s2 + 1)! s1! (s2 − s1)!

×(D + s2 + s1 − 5)(D + 2s2 − 4)(D + 2s1 − 6) . (5.81)

This is the dimension of a Young tableau with s2 boxes in the first row and s1 ≤ s2 boxes

in the second row.

For arbitrary r we identify nk = sk + k − 1 so that (5.79) should yield the dimension

of a generic Young tableau with sk boxes in the k−th row and s1 ≤ s2 ≤ · · · ≤ sr. In

all these cases, the physical degrees of freedom correspond then to irreducible so(D − 2)

representations. In fact, for arbitrary r, we expect that equation (5.79) is the generating

function for the dimensions of irreducible so(D − 2) representations. In the next section

we obtain the same result from the second quantized equations of motion that follow from

the BRST cohomology computation of section 5.4.

5.7 Lightcone degrees of freedom

Our final computation is to verify that the path integral degree of freedom counts match

those obtained by a direct analysis of the second quantized field equations (5.53) which we

reproduce here for convenience

(
∆− gradidivi +

1

2
gradigradjtr

ij
)
Ψ = 0 , (5.82)

tri(jtrkl) Ψ = 0 , (5.83)

N
j>i
i Ψ = 0 . (5.84)
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These equations enjoy the gauge invariances

δΨ = gradiξ
i , where tr(ij ξk) = tri(jtrkl) ξm = 0 . (5.85)

A detailed proof of these dimension counts, which are essentially just a higher dimen-

sional analog of Wigner’s original computation of unitary representations of the Poincaré

group [40], were only given rather recently in [41]. A BRST lightcone version of this com-

putation was given in [38]. By far the the speediest method to perform this computation,

however, is to employ lightcone gauge directly to the second quantized Lagrangian. For

completeness we present that result here. Expressing the metric as

ds2 = 2dx+dx− + d~x 2 , (5.86)

we assume that ∂/∂x− is invertible and set it equal to unity in what follows.

Our main philosophy is to expand fields and field equations in powers of differ-

entials dix
− in the x− direction. All the operators (∆,gradi,divi,gij ,N

j
i , tr

ij) then

have (D − 2)-dimensional analogs operating in the ~x directions. We denote these by hats

so that

∆ = 2
∂

∂x+
+ ∆̂ ,

gradi = dix
− + dix

+ ∂

∂x+
+ ĝradi ,

divi =
∂

∂(dix−)

∂

∂x+
+

∂

∂(dix+)
+ d̂ivi ,

gij = 2 d(ix
−dj)x

+ + ĝij ,

N
j
i = dix

− ∂

∂(djx−)
+ dix

+ ∂

∂(djx+)
+ N̂

j
i ,

trij = 2
∂

∂(d(ix−)

∂

∂(dj)x+)
+ t̂rij . (5.87)

Now we decompose the field Ψ as

Ψ(dix
−) = ψ + dix

−χi , (5.88)

where ψ is independent of dix
−. On the other hand the fields χi are dix

− dependent, and

we focus on the term with the highest power of dix
−. Examining the terms of highest order

in the field equation (5.82) coming from the grad2 tr-term, we see that the highest order

term in χi is lightcone symmetric-trace-free (i.e., annihilated by t̂r(ij). However, from the

lightcone decomposition of gradi in (5.87), the gauge invariance (5.85) becomes

δΨ =
(
dix

− + · · ·
)
ξi . (5.89)

The trace condition on the gauge parameter ξi exactly ensures that its highest dix
− term

is also lightcone symmetric-trace-free. Hence we may algebraically gauge away the highest

order term in χi. Iterating the above argument allows us to gauge away all of χi so that

Ψ = ψ(di~x, dix
+) . (5.90)
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Our computation is completed by solving (5.82) for fields of the above form. Again we

work order by order in dix
−. At highest order we learn

t̂rij ψ = 0 . (5.91)

To study lower order terms we split

ψ(di~x, dix
+) = ψ̂(di~x) + dix

+ψi , (5.92)

where the field ψ̂ only has (D − 2)-dimensional indices. The fields ψi are all dependent

because the next to leading order terms in (5.82) imply

∂ψ

∂(dix+)
+ d̂iviψ = 0 . (5.93)

This condition can always be solved in terms of the ψi in (5.92) so it remains to gather the

remaining lowest order terms in (5.82) which read

{
2
∂

∂x+
+ ∆̂

}
ψ̂ = 0 . (5.94)

This is simply the D-dimensional Klein-Gordon equation. Finally we still need to impose

the symmetry condition. It is not hard to see that it implies

N̂
j>i
i ψ̂ = 0 . (5.95)

Hence the independent light cone degree of freedom are described by a totally symmet-

ric (D − 2)-dimensional tensors, which solve the D-dimensional wave equation and are

both (D− 2)-dimensional trace-free and irreducible. Or in other words, the degree of free-

dom count is given by dimensions of so(D− 2) irreducible representations. This shows the

claimed equivalence between BRST and path integral quantizations.

6 Conclusions

In this Article we have tackled the problem of constructing and quantizing quantum field

theories for tensor fields with general symmetry types using a worldline approach. As de-

picted below, our starting point was a quantum mechanical (super)symmetric model whose

wave functions are the type of tensor fields appearing in the desired second quantized model.

(Super)symmetric

Quantum Mechanics

ւ ց
Spinning Particle BRST Detour

Path Integral ←−−→ Quantization
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Thereafter we identified first class constraint operator algebras acting on the quantum

mechanical Hilbert space. From these algebras one can build a first quantized gauge

theory in two ways, either path integral methods, or BRST quantization. The former

led to a path integral representation of a spinning particle model while the latter, using

the detour complex idea, yielded the classical equations of motion of a second quantized

gauge field theory. The path integral approach gave a worldline method for computing

quantum quantities in the second quantized field theory, the simplest of which was a count

of the physical degrees of freedom. These can of course also be computed by studying the

dimensionality of the Cauchy data of the classical field equations. Indeed we found that

these two methods gave identical answers for a large class of higher spin theories.

The quantum mechanical models we used as a starting point fall into a very broad class

of models labeled by their R-symmetry groups which are given by general orthosymplectic

supergroups. In that language our Article focused on the osp(2|0) and osp(0|2r) models.

However, it is clear that our methods can be generalized to any of the osp(Q|2r) models.

When Q is odd, these models describe spinor-tensor fields in second quantization. The

case osp(2|1) has been studied in [26] to describe spinor valued totally symmetric tensor

theories, but clearly a complete description of fermionic second quantized models would

be desirable.

There are many other directions our results lead to. The most interesting of course,

would be to shed light on self-interactions of higher spin fields. By now a large literature

exists on this subject, a consistent theme being that interactions for higher spins requires

towers of infinitely many second quantized fields (see [8] for an extensive review of these de-

velopments). In simplest terms this points at a difficulty gauging the number operator(s) N

of our quantum mechanical models. From the path integral viewpoint, this difficulty can be

seen through the sparsity of consistent world-line Chern-Simons terms that can be added

to the worldline action.

There are two other most interesting, and in fact related, applications of our results.

These are computations of higher (second quantized) quantum amplitudes and interactions

with backgrounds. Higher amplitudes are encoded, for example, by studying the depen-

dence of the worldline effective action on arbitrary background fields. It is not difficult

to couple our underlying quantum mechanical models to either background Yang-Mills or

gravitational fields by twisting the connection appearing in the covariant canonical momen-

tum operator. However in general this can produce obstructions to our constraint algebras

being first class. These obstructions have been studied and explicated in [36]. The phe-

nomenon of higher spin fields suffering inconsistencies in backgrounds is one that has been

known for a long time (dating back to work on coupling massive spin 3/2 fields, see for a

thorough account [42]).

It is possible to view these obstructions to first class algebras in general spaces in a

more positive light. Namely, these algebras can be used to develop powerful invariants for

determining the underlying geometry of the background manifold. In turn, when the back-

ground manifold belongs to a special class of geometries, consistency and even enhanced

symmetries and constraint algebras can result. The special rôle played by certain geome-

tries in string theory is an example of this phenomenon. Another example are the Kähler
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higher spin models constructed in [43–45] and (p, q)-form Kähler electromagnetism [46].

The latter of these theories follows from the detour construction [47]. It would be most

interesting to compute its path integral quantization.
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